
 Querying Temporal Database System for University Staff Database

Su Lei Phyu
University of computer studies, Yangon

suleiphyu.ucsy@gmail.com
 starfish.su63 @gmail.com

Abstract

A temporal database is a database with

built-in time aspects or a temporal data model and
a temporal version of structured query language.
More specifically the temporal aspects usually
include valid time and transaction time. These
attributes go together to form bi-temporal data.
Valid time denotes the time period during which a
fact is true with respect to the real world.
Transaction time is the time period during which a
fact is stored in the database. Bi-temporal data
combines both Valid and Transaction Time.

In this system, university staff database
management system using temporal database is
used for university staff transfer, promotion,
education, training, experience, salary and position
history need to be maintained. The main task of the
system is to record the time varying data about
university staffs database. University has different
departments and different roles of staff. This staff
has owned different positions and different salary
on time varying. This system can maintain and
analyze the staff’s history, position status and
salary. Thus, the executive of the University can
review the staff’s condition accordingly with the
staff transfer and promotion.

Keyword: Bi-temporal data, temporal database,
valid time, transaction time.

1. Introduction

A database is an organized repository for
data. A database that contains current data only is
termed as a snapshot database in which data is
deleted or updated when the facts represented by
that data cease to be true, For example, consider the
University Staff Database, in which case, one of
the staff is currently Lecturer. From the view of
temporal version, by contrast, it might show not
only that the rank is currently Lecturer, but also
that he has been that rank ever since May 5th 2006.

A temporal database is formed by
compiling, storing temporal data. The difference
between temporal data and non-temporal data is
that a time period is appended to data expressing
when it was valid or stored in the database. The
data stored by conventional databases consider data

to be valid at present time as in the time instance
“now”. When data in such a database is modified,
removed or inserted, the state of the database is
overwritten to form a new state. The state prior to
any changes to the database is no longer available.
Thus, by associate time with data, it is possible to
store the different database states.

In essence, temporal data is formed by
time-stamping ordinary data (type of data we
associate and store in conventional databases).
Each ordinary data has two time values attached to
it, a start time and an end time to establish the time
interval of the data. In a relational data model,
relations are extended to have two additional
attributes, one for start time and another for end
time. Time can be interpreted as valid time or
transaction time. A historical database stores data
with respect to valid time. A rollback database
stores data with respect to transaction time. A
bitemporal database stores data with respect to
both valid and transaction time they store the
history of data with respect to valid time and
transaction time.

2. Related Works

In [3], this paper shows a model for
representing changes in semi structured data
(DOEM) and a language for querying changes. The
querying languages were translated to a language
for querying semi structured data, and can therefore
be viewed as a stratum approach. In [1], the
research area of temporal databases aims to change
this state of affairs by characterizing the semantics
of temporal data and providing expressive and
efficient ways to model, store, and query temporal
data.

In [8], temporal Wikipedia explains the
temporal data nature and temporal data aspect. It
record not only changes in what happened at
different times, but also changes in what was
officially recorded at different times. A particularly
challenging issue is the support of temporal queries
in a transaction time database under evolving
schema. In [6], this paper shows the historical
database with a chronology, touching briefly on all
work that awareness of this area. It discuss in some
detail what the system consider to be the ten most
important papers and events in terms of their
impact on the discipline of temporal database.

3. Temporal Database

Temporal data stored in a temporal
database is different from the data stored in non-
temporal database in that a time period attached to
the data expresses when it was valid or stored in
the database. As mentioned above, conventional
databases consider the data stored in it to be valid
at time instant now, they do not keep track of past
or future database states. By attaching a time period
to the data, it becomes possible to store different
database states.

There are mainly two different notions of
time which are relevant for temporal databases.
One is called the valid time, the other one is the
transaction time. Valid time denotes the time
period during which a fact is true with respect to
the real world. Transaction time is the time period
during which a fact is stored in the database. Note
that these two time periods do not have to be the
same for a single fact. Imagine that we come up
with a temporal database storing data about the
18th century. The valid time of these facts is
somewhere between 1700 and 1799, where as the
transaction time starts when we insert the facts into
the database, for example January 21, 1998.

Then, the following table could result:

Emp
ID

Name Dept Salary VTstart VTEnd

10 U Hla SW 11000 1985 1990

10 U Hla APP 11000 1990 1993

10 U Hla APP 12000 1993 Now

11 Daw Nu HW 10000 1988 1995

12 Daw Mya HW 10500 1991 Now

The above valid-time table stores the
history of the employees with respect to the real
world. The attributes ValidTimeStart and
ValidTimeEnd actually represent a time interval
which is closed at its lower and open at its upper
bound. Thus, we see that during the time period
[1985 - 1990), employee U Hla was working in the
Software department, having a salary of 11000.
Then he changed to the Application department,
still earning 11000. In 1993, he got a salary raise to
12000. The upper bound Now denotes that the
tuple is valid until further notice. Note that it is
now possible to store information about past states.
We see that Daw Nu was employed from 1988
until 1995. In the corresponding non-temporal table,
this information was deleted when Daw Nu left the
company.

3.1 Temporal Database Forms and Data
Model

Another important issue relating to the
representation of time is the role played by the time
(what the time signifies) that is being supported by
the temporal database system. There are two

common perceptions of time, transaction time and
valid time.

3.1.1 Transaction time

A database object is stored in a database at
some point in time. The transaction time of an
object is the time when the object is stored in the
database, the time that is present in the database.
For example, in banking system, the transaction
time of a withdrawal would be form the time the
clerk entered the payment of withdrawal into the
database to the time that it was made invalid in the
database. Another example would be, in a company
situation, an employee receives a pay rise but it
comes into effect when the payroll clerk enters this
salary rise into the database. Transaction time
values cannot be after the current time.
 Often, data cannot be recorded in a
database in real time, for example, due to a delay in
the processing of information. So there might be a
time gap between data being valid in the real world
and recording the data in a database. Sometimes, it
is necessary to keep track during which time
periods facts are stored in a database. This notion
of time is called transaction time. A database object
is stored in a database at some point in time. The
transaction time of an object is the time when the
object is stored in the database, the time that is
present in the database. It is maintained entirely by
the system, and no user is allowed to change them.
 Valid time, by contrast, can be viewed as
the history of value changes. Recording transaction
time can also be viewed as recording the history of
corrections. This means that data timestamped with
transaction time provides for querying the history
of data manipulations and errors, whereas data
timestamped with valid time allows the querying of
value changes. Values for transaction time cannot
be later than the current time, since transaction time
reflects the time when a database operation is
actually executed. The DBMS itself records
transaction time. It also does not make sense to
update transaction time, since a database operation
of a committed transaction can never be undone.
The only way to change a committed database
operation is to do an inverse transaction, which,
however, is executed at a later time point and thus
leads to another transaction time record.

3.1.2 Valid time

The valid time of a database object is the
time when the object is effective or holds (is true)
in reality. The time when the event occurred, took
place in reality. For example, in a banking system,
the payments and withdrawals made by a customer
have a valid time associated with the time the
customer performs the transaction at the bank.
Objects in the temporal database system will have a
time component associated to it; this will hold
either the valid time or the transaction time.

Objects in the temporal database system
will have a time component associated to it; this
will hold either the valid time or the transaction
time. Valid time concerns the time when a fact is

true in reality. Valid times can be in the future, if it
is known that some fact will become true at a
specified time in the future. This notion of time,
recording data with respect to when it was, is or
will be valid in the real world, is called valid time.
A valid time interval thus records the time period
when a fact is true. Valid time must be supplied by
the user when adding or modifying data. Valid time
values can be updated.

3.1.3 User defined time

User defined times are drawn from a
domain of dates and times with an identity relation
and a total ordering, i.e., it has an associated less
than relation. User defined times may be manually
supplied or computed by an application program.
 A distinction can be made whether or not
the timestamp added to data is interpreted by the
DBMS (for example, during query evaluation). An
un-interpreted timestamp, for example, a value in
an attribute birthday, is called user-defined time,
because the user himself interprets the given time
information, whereas the DBMS treats this
temporal data as just another attribute. Values can
be any time instant referring to past, present or
future time points. User defined time values are
supplied by the user and may be updated.

3.2. Bitemporal Operation

 A temporal database (or a bitemporal
database) combines both a historical database and a
rollback database, so it has both valid-times and
transaction times. This allows you to make queries
about historical dates as they were believed to be at
some point in the past.
 A bi-temporal database stores the
history of data with respect to both valid time and
transaction time. It is noted that the history of when
data was stored in the database (transaction time) is
limited to past and present database states, since it
is managed by the system directly which does not
know anything about future states. So, a bi-
temporal database is a combination of a historical
and a rollback database. A bi-temporal database
thus has the properties of both historical and
rollback databases. It is now possible to record
updates of valid time in this kind of database. A
diagram of bi-temporal database is shown in Figure
1.

Figure 1. A bi-termporal database in context of valid time
and transaction time

3.3 Time Interval Operations

Temporal modal logic represents time by
means of modal operators. It is an extension to
classical logic that provides the logic of
possibilities. Temporal intervals are at the core of
the system. Intervals are fundamental and at base
not further sub-dividable. Events occur in one
temporal interval. When we talk about time in
databases, we mean a system that can be linear,
branching (linear in the past with multiple paths in
the future) or cyclic.

 Time can be continuous, analogous to the
real numbers, dense (analogous to, e.g. the rational
numbers) or discrete. Time can be aggregated into
temporal sets, intervals and periods, which are sets
of intervals. The building blocks of any time
system are the elements that make up the time line.
On these time lines, we define an Instant as a time
point on an underlying time axis. Likewise, a Time
Interval (TI) is the time between two instants.

Since intervals are represented as pairs of
time-points, comparisons between intervals are
based on time-point comparisons of the upper and
lower bounds. The interval comparison operators
are BEFORE, AFTER, DURING, CONTAINS,
OVERLAPS, MEETS, STARTS, FINISHES, and
EQUAL.

Let I1, I2 be two intervals, and begin(I),
end(I) be respectively the lower bound and upper
bound of the interval I. The definitions of 13
interval comparisons are given in Table 1.

Table 1. Comparison Operators Meaning

1 I1 before I2 I1E < I2S

2 I1 after I2 I2E<I1S

3
4

I1 during I2
I1 contains I2

(I1S>I2S ∧ I1E ≤ I2E)∨
(I1S≥I2S ∧ I1E < I2E)
(I2S>I1S ∧ I2E ≤ I1E) ∨
(I2S≥I1S ∧ I2E < I1E)

5
6

I1 overlaps I2
I1 overlapped_by I2

I1S < I2S ∧ I1E > I2S ∧
I1E < I2E
I2S < I1S ∧ I2E > I1S ∧
I2E < I1E

7
8

I1 meets I2
I1 met_by I2

I1E = I2S
I2E = I1S

9
10

I1 starts I2
I1 started_by I2

I1S = I2S ∧ I1E<I2E
I1S = I2S ∧ I2E<I1E

11
12

I1 finishes I2
I1 finished_by I2

I1S > I2S ∧ I1E=I2E
I2S > I1S ∧ I1E=I2E

13 I1 equivalent I2 I1S = I2S ∧ I1E=I2E

4. Overview of the proposed system

This system is the development of
university staff information system for computer

universities. In computer universities, all of staffs
are different positions, different department,
different salary by time varying. The universities
staffs are attend the different training, teach the
different subjects, accept the different transfer
university. Thus, this system can view the current
information of the required staff and can analyze
the different places and roles of staff.

This system mainly maintains the personal
data in current condition. The user can view the
staff personal detailed data and current university,
current rank, current department and current pay
scale. In addition, this system also maintains the
training, transfer and subject operations. In these
operations include valid-start and valid-end
attributes. These attributes are actually represent a
time interval which is closed at its lower and open
at its upper bound.

In our proposed system, user can do insert
new staff, search by staff number for valid staff and
searching staff information by user request. In
insert new staff information, if the inserted staff
information is not completed, the system shows the
page with required field for user input. When the
user input completes, the insertion of new staff case
is successful and will show these staff information.

In search by staff number for only valid
staff, if the searched staff ID is valid until now then
the system will show that staff, otherwise the
system will show no selected staff. In searching
staff information by user request, the system will
show the staff information by user requested. If the
staff is valid in the system, that valid staff can do
update or delete operation. All these insert, update,
delete and select operations of information are
processed to temporal database and then display the
result of staff detailed information. Final, user can
get the historical information of staff such as the
movement, promotion, change salary rate and retire
of staff form University.
 This system can use temporal operators
such as before, after, during, contains, meets, starts,
finishes, equivalent. If user wants to see the staff
training data before specified date, the system
shows the required staff information. The user can
see all staff information about staff training,
transfer and teaching subject by user requested time.

The method and apparatus also intercepts

other commands to change a temporal database,
such as those similar to conventional SQL
"DELETE" and "INSERT" commands, and
generates conventional SQL commands to perform
delete and insert functions using a subset of the
techniques used to perform updates described
above.

Our temporal application was developed
as the ways describe above, by using a relational
database system to model and store temporal
relations and hence, produces a temporal database.
This database application will demonstrate
temporal features and aspects to users.

Figure 2 shows the system flow diagram
of our proposed system.

Figure 2: System flow diagram

4.1 Database Design Of the proposed system

Figure 3. Staff Database Design

In our database, we have four tables, one

is personal which is to record staff’s personal data
and the other three is staff transaction tables. There
are Training, Transfer and Subject. Figure 1 shows
Staff database design. Since Personal table has no
temporal operation, common query statements can
be used for this table.

The temporal operation will be done on
three transaction tables. The Training transaction
table has seven attributes such as Train_no,
Staff_no, Train_des, Valid_start, Valid_end,
Country and Remark. Among these attributes,
Train_desc and Country are distant transactional
attributes for our application. The department
attribute has nine dimensions such as Myanmar,
English, Information Science, Computational
Mathematic, Computer Software, Computer
Hardware, Computer Application, Research and
Development and Operation and rank attribute has
six dimensions such as Demonstrator, Tutor,

Training

Train_no
Staff_no
Train_des
Valid_start
Valid_end
Country
Remark

Subject

Sub_no
Staff_no
Sub_name
Sub_des
Valid_start
Valid_end
Rank
Department
University

Personal

Staff_no
Staff_name
Staff_dob
Staff_birth
place
Staff_race
Staff_religion
Staff_height
Staff_weight
Staff_eyecolor
Staff_haircolor
Staff_persoanl
mark
Staff_rank
Dept
University
Residence
Phone
Pay_scale
Salary
Job-start-date

Transfer

Trans_no
Staff_no
Valid_start
Valid_end
Trans_start
Trans_end
Rank
Department
University
Qualification
Pay-scale
Salary

S t a r t

A c c e p t
U s e r

Q u e r y

C o n v e r t S Q L
e q u i v a l e n t

Q u e r y i n g i n p u t

D i s p l a y
R e s u l t s

E n d

T e m p o r a l
D a t a

Assistant Lecturer, Lecturer, Associate Professor,
Professor.

As a first step in introducing the topic of
the paper, we briefly describe bi-temporal data.
This type of data has associated a valid time,
indicating when the data was true in the modeled
reality, and a transaction time, indicating when the
data along with its valid time was stored as current
in the database.

The valid time of a tuple, a period, may be
recorded using the two attributes Valid start and
Valid end.

When database designers actually
understand the core temporal database concepts,
perhaps most prominently valid and transaction
time, they are able to design better databases using
existing models and tools. A central challenge is to
provide complete conceptual models, with
associated design tools, that cover all aspects of
designing a temporal database; empirical
evaluation of these by real users is needed to
provide essential insights.

The cardinality (number of specific
values) of an attribute is less useful than the
average cardinality at a point in time. Another
useful statistic is the number of long-lived tuples,
the presence of which is the bane of some index
structures and temporal algebraic operators. The
area of active databases, rules responding to
database changes and external events are a focus.
These may be extended to take into account prior
history and temporal trends.

4.2 Querying Staff Temporal Database
 In this system, the user can use the
temporal operators such as before, after and during.
For example, the user wants to see the all of the
staff’s transfer before 1.1.2000, than the system
will show the transfer staff before 1.1.2000.

Before
Q1 : Get subject name for Daw Ni Ni who are
teaching at IS department before2009.01.02.
SQL:
SELECT subject.sub_name
FROM subject LEFT OUTER JOIN personal ON
subject.staff_no = personal.staff_no
WHERE subject.valid_end <= '2009-01-02' AND
personal.staff_name LIKE 'Daw Ni Ni' AND
subject.department LIKE 'IS'

After
Q2 : Get staff name who are transfer with
Assistant Lecturer position to UCSM after 2000-
09-16.
SQL:
SELECT personal.staff_name
FROM transfer LEFT OUTER JOIN personal ON
transfer.staff_no = personal.staff_no
WHERE transfer.valid_start >= '2000-09-16' AND
transfer.staff_rank LIKE 'AL' AND
transfer.university LIKE 'UCSM'

During
Q3 : Get transfer university for Daw Mi Mi Khine
during 5 Years in 1999-05-21 to 2004-05-21.
SQL:
SELECT transfer.university
FROM transfer LEFT OUTER JOIN personal ON
transfer.staff_no = personal.staff_no
WHERE transfer.valid_start > '1999-05-21' AND
transfer.valid_end <= '2004-05-21' AND
personal.staff_name LIKE 'Daw Mi Mi'

5. Conclusion

Finally, since this system implements the
temporal operation on MySql database server, the
temporal query statements will be needed to
substitute with non_temporal query statements
which are supported by MySql.

In this system, we can make operation of
transfer, promotion, education, training, experience,
salary and position and view the required
operations of the staff. We can’t use real temporal
operators and query language. We only implement
temporal aspect by using relational database
architecture. This system can use user required
operators like temporal nature.

Reference:

[1] Christian S, Jensen, Introduction to Temporal
Database Research

[2] G. Hamilton and R. Cattell. JDBC: A Java SQL API
version 1.20.JavaSoft, 1997.

[3] I. Ahn and R. T. Snodgrass. Partitioned Storage for
Temporal Databases. Information Systems, 13(4):369–
391, 1988.

[4] J. Gray and A. Reuter. Transaction Processing:
Concepts and Techniques. Morgan Kaufmann Publishers,
1993.

[5] J. Patel, Department of Computing, Imperial College,
University of London, Temporal Database Systeem,
2003.
[6] M. H. Böhlen. Temporal Database System
Implementations. SIGMOD Record, 24(4):53–60, 1995.

[7] R. T. Snodgrass. The Temporal Query
Language TQuel. ACM TODS, 12(2):247–298
(1987).

[8] Temporal database-Wikipedia, the free encyclopedia

